Sitemize reklam vermek için [email protected] adresine mail atabilirsiniz
For Advertising Contact [email protected]


Prizmalar

BoRa{TR}

Level 7
TM Üye
Üye
Katılım
26 Ocak 2009
Konular
745
Mesajlar
1,513
Reaksiyon Skoru
131
Başarım Puanı
175
MmoLira
0
DevLira
0
En İyi Cevap Puanı
0
Ticaret - 0%
0   0   0
Prizmalar



  • DİK PRİZMALARIN ALAN ve HACİMLERİ
Alt ve üst tabanları paralel eş şekillerden oluşan cisimlere prizma denir. Yan yüzeyleri taban düzlemine dik olan prizmalara dik prizma adı verilir.
Prizmalarda yan yüzeyleri birleştiren ayrıtlara yanal ayrıt denir. [AA'], [BB'], [CC'], [DD'] yanal ayrıtlardır. Dik prizmalarda yanal ayrıt cismin yüksekliğine eşittir. Cismin yüksekliğine h dersek h = |AA’| = |BB’| = |CC’| = |DD’| olur.
Prizmanın Hacmi Hacim=Taban Alanı x Yükseklik
Dik prizmanın taban biçimi nasıl olursa olsun, yanal yüzeyi daima bir dikdörtgen olur. Yanal yüzü oluşturan dikdörtgenin alt kenarı tabanın çevresi kadardır. Diğer kenarı ise h yüksekliği kadar olur. Yanal Alan = Taban çevresi x YükseklikBütün dik prizmaların yanal alanı taban çevresi ile yüksekliğin çarpımıdır. Bütün Alan ise yanal alan ile iki taban alanının toplamıdır. Tüm Alan = Yanal Alan + 2. Taban Alanı1. Dikdörtgenler Prizması Dikdörtgenler prizması yan yüzeyleri karşılıklı ikişer ikişer eş olan altı adet dikdörtgenden oluşan prizmadır. Burada hacim, taban alanı olan (a.b) ile yükseklik olan (c) nin çarpımıdır. Alan ise (a.b), (b.c) ve (a.c) yüzey alanlarının ikişer katlarının toplamıdır. Dikdörtgenler prizmasında birbirine en uzak iki köşeyi birleştiren doğru parçasına cisim köşegeni denir.
Cisim köşegeni daima prizmanın içinden geçer. Yüzeylerinden geçmez. Sadece bir yüzeyden geçen köşegene o yüze ait yüzey köşegeni denir. Burada köşegenlerin uzunlukları |AC’| = |A’C| = |BD’| = |B’D| = e (cisim köşegeni) |BD| = f (Yüzey köşegeni) olsun. Bu durumda Hacim = a.b.c Alan =2(ab+bc+ac) Alan = 2 (ab + bc + ac) Cisim Köşegeni: e =Öa2 + b2 + c2 Yüzey Köşegeni: f = Öa2 + b2 2. Kare Prizma Tabanı kare olan prizmalara kare prizma denir. Yan yüzü dört adet eş dikdörtgenden oluşur.
Hacim = a2 . hYanal Alan = 4 . a . h Alan = 4.ah + 2.a2Cisim köşegeni : e = Öa2 + a2 + h2 3. Küp Bütün ayrıtları birbirine eşit olan dik prizmaya küp denir. Tüm yüzeyleri kare dir.
Hacim = a3 Alan = 6a2 Kübün yüzey köşegenleri birbirine eşittir. Yüzey köşegeni: f = aÖ2 Cisim köşegeni: e = aÖ3 4. Üçgen Prizmalar Prizmalar tabanlarının şekline göre isim aldıklarından tabanı üçgen olan prizmalara üçgen prizma denir. Üçgen prizmalar tabanını oluşturan üçgene göre isimlenir. a. Eşkenar Üçgen Prizma Eşkenar üçgen prizmanın tabanları eşkenar üçgendir. Yan yüzeyleri ise üç tane eş dikdörtgenden oluşur.Tabanı eşkenar üçgen olduğundan
Tabanı eşkenar üçgen olduğundan Taban alanı
Hacim
Taban çevresi 3a olduğundan, yanal alan 3a.h dır. Buradan tüm alanı Tüm alan
b. Dik Üçgen Prizma Dik üçgen prizmanın tabanı dik üçgendir. Yan yüzeyleri ise üç tane dikdörtgenden oluşur.
Tabanı dik üçgen olduğundan Taban alanı =
Hacim
Taban çevresi a + b + c olduğundan, Yanal alan = (a + b + c) . h Tüm Alan = b . c + (a + b + c) . h 5. Silindir Tabanı daire olan prizmalara silindir denir. Silindirin yan yüzü dikdörtgen biçimindedir. Dikdörtgenin bir kenarı yükseklik kadar, diğer kenarı ise taban dairesinin çevresi kadardır.
Taban alanı= pr2 Hacim= pr2hTaban çevresi 2pr olduğundan yanal alan 2prh olur. Tüm alan = 2prh+ 2prBir dikdörtgen levha bir kenarı etrafında döndürüldüğünde silindir elde edilir.
6. Düzgün Çokgen Prizmalar Tabanı düzgün çokgenlerden oluşan prizmalara düzgün çokgen prizmalar deriz. Taban ayrıtları birbirine eşittir. Diğer dik prizmalarda olduğu gibi düzgün çokgen prizmalarda da yanal ayrıt aynı zamanda yüksekliktir.

  • Dik prizmalarda taban şekli ne olursa olsun, hacmin taban alanı ile yüksekliğin çarpımı ve yanal alanın ise taban çevresi ile yüksekliğin çarpımı olduğunu unutmayalım.
EĞİK PRİZMALAR 1. Eğik Kare Prizma
Tabanı, bir kenarı a olan kareden oluşan prizma bir yöne doğru taban düzlemi ile a açısı yapacak kadar eğilirse eğik kare prizma elde edilir. Prizmanın yanal ayrıtlarına l dersek, Prizmanın yüksekliği h =l .sin a olur. Eğik prizmanın yanal ayrıtlarına dik olacak şekilde oluşan kesitine dik kesit denir. Eğik kare prizmanın iki yan yüzeyi dikdörtgen, diğer iki yan yüzeyi ise paralelkenardır. Eğik kare prizmanın dik kesitinin bir kenarı taban kenarı a kadar, diğeri ise, a’=a.sin a kadardır. Buradan; Dik Kesit Alanı = Taban Alanı x Sin a Dik kesit çevresi = 2a +2a.sin aEğik prizmaların yanal alanlarının toplamı Yanal alan= Dik kesit çevresi x Yanal Ayrıtbağıntısı ile bulunur. Alt ve üst tabanlar ilave edildiğinde tüm alan bulunmuş olur. Bütün prizmalarda olduğu gibi eğik prizmalarda da hacim, taban alanı ile yüksekliğin çarpımı ile bulunur. Hacim = Taban Alanı x YükseklikAyrıca dik kesit alanı ile yanal ayrıtın çarpımı ile de hacim bulunabilir. Hacim = Dik Kesit Alanı x Yanal Ayrıt 2. Eğik Silindir |AA’| = |BB’| = l Yanal ayrıtı l olan ve taban düzlemi ile a açısı yapan eğik silindirde yükseklik, h=l.sin a Dik Kesit Alanı=Taban Alanı x Sin a
Eğik silindirin yan yüz alanı, dik kesit çevresi ile yanal ayrıtının çarpımıdır. Bütün eğik prizmalarda olduğu gibi eğik silindir de de hacim, dik kesit alanı ile yanal ayrıtın çarpımına eşittir. Hacim = Taban Alanı x Yükseklik Hacim = Dik Kesit Alanı x Yanal Ayrıt Yanal Alan = Dik Kesit Çevresi x Yanal Ayrıt

  • DİK PRİZMALARIN ALAN ve HACİMLERİ
Alt ve üst tabanları paralel eş şekillerden oluşan cisimlere prizma denir. Yan yüzeyleri taban düzlemine dik olan prizmalara dik prizma adı verilir.
Prizmalarda yan yüzeyleri birleştiren ayrıtlara yanal ayrıt denir. [AA'], [BB'], [CC'], [DD'] yanal ayrıtlardır. Dik prizmalarda yanal ayrıt cismin yüksekliğine eşittir. Cismin yüksekliğine h dersek h = |AA’| = |BB’| = |CC’| = |DD’| olur.
Prizmanın Hacmi Hacim=Taban Alanı x Yükseklik
Dik prizmanın taban biçimi nasıl olursa olsun, yanal yüzeyi daima bir dikdörtgen olur. Yanal yüzü oluşturan dikdörtgenin alt kenarı tabanın çevresi kadardır. Diğer kenarı ise h yüksekliği kadar olur. Yanal Alan = Taban çevresi x YükseklikBütün dik prizmaların yanal alanı taban çevresi ile yüksekliğin çarpımıdır. Bütün Alan ise yanal alan ile iki taban alanının toplamıdır. Tüm Alan = Yanal Alan + 2. Taban Alanı1. Dikdörtgenler Prizması Dikdörtgenler prizması yan yüzeyleri karşılıklı ikişer ikişer eş olan altı adet dikdörtgenden oluşan prizmadır. Burada hacim, taban alanı olan (a.b) ile yükseklik olan (c) nin çarpımıdır. Alan ise (a.b), (b.c) ve (a.c) yüzey alanlarının ikişer katlarının toplamıdır. Dikdörtgenler prizmasında birbirine en uzak iki köşeyi birleştiren doğru parçasına cisim köşegeni denir.
Cisim köşegeni daima prizmanın içinden geçer. Yüzeylerinden geçmez. Sadece bir yüzeyden geçen köşegene o yüze ait yüzey köşegeni denir. Burada köşegenlerin uzunlukları |AC’| = |A’C| = |BD’| = |B’D| = e (cisim köşegeni) |BD| = f (Yüzey köşegeni) olsun. Bu durumda Hacim = a.b.c Alan =2(ab+bc+ac) Alan = 2 (ab + bc + ac) Cisim Köşegeni: e =Öa2 + b2 + c2 Yüzey Köşegeni: f = Öa2 + b2 2. Kare Prizma Tabanı kare olan prizmalara kare prizma denir. Yan yüzü dört adet eş dikdörtgenden oluşur.
Hacim = a2 . hYanal Alan = 4 . a . h Alan = 4.ah + 2.a2Cisim köşegeni : e = Öa2 + a2 + h2 3. Küp Bütün ayrıtları birbirine eşit olan dik prizmaya küp denir. Tüm yüzeyleri kare dir.
Hacim = a3 Alan = 6a2 Kübün yüzey köşegenleri birbirine eşittir. Yüzey köşegeni: f = aÖ2 Cisim köşegeni: e = aÖ3 4. Üçgen Prizmalar Prizmalar tabanlarının şekline göre isim aldıklarından tabanı üçgen olan prizmalara üçgen prizma denir. Üçgen prizmalar tabanını oluşturan üçgene göre isimlenir. a. Eşkenar Üçgen Prizma Eşkenar üçgen prizmanın tabanları eşkenar üçgendir. Yan yüzeyleri ise üç tane eş dikdörtgenden oluşur.Tabanı eşkenar üçgen olduğundan
Tabanı eşkenar üçgen olduğundan Taban alanı
Hacim
Taban çevresi 3a olduğundan, yanal alan 3a.h dır. Buradan tüm alanı Tüm alan
b. Dik Üçgen Prizma Dik üçgen prizmanın tabanı dik üçgendir. Yan yüzeyleri ise üç tane dikdörtgenden oluşur.
Tabanı dik üçgen olduğundan Taban alanı =
Hacim
Taban çevresi a + b + c olduğundan, Yanal alan = (a + b + c) . h Tüm Alan = b . c + (a + b + c) . h 5. Silindir Tabanı daire olan prizmalara silindir denir. Silindirin yan yüzü dikdörtgen biçimindedir. Dikdörtgenin bir kenarı yükseklik kadar, diğer kenarı ise taban dairesinin çevresi kadardır.
Taban alanı= pr2 Hacim= pr2hTaban çevresi 2pr olduğundan yanal alan 2prh olur. Tüm alan = 2prh+ 2prBir dikdörtgen levha bir kenarı etrafında döndürüldüğünde silindir elde edilir.
6. Düzgün Çokgen Prizmalar Tabanı düzgün çokgenlerden oluşan prizmalara düzgün çokgen prizmalar deriz. Taban ayrıtları birbirine eşittir. Diğer dik prizmalarda olduğu gibi düzgün çokgen prizmalarda da yanal ayrıt aynı zamanda yüksekliktir.

  • Dik prizmalarda taban şekli ne olursa olsun, hacmin taban alanı ile yüksekliğin çarpımı ve yanal alanın ise taban çevresi ile yüksekliğin çarpımı olduğunu unutmayalım.
EĞİK PRİZMALAR 1. Eğik Kare Prizma
Tabanı, bir kenarı a olan kareden oluşan prizma bir yöne doğru taban düzlemi ile a açısı yapacak kadar eğilirse eğik kare prizma elde edilir. Prizmanın yanal ayrıtlarına l dersek, Prizmanın yüksekliği h =l .sin a olur. Eğik prizmanın yanal ayrıtlarına dik olacak şekilde oluşan kesitine dik kesit denir. Eğik kare prizmanın iki yan yüzeyi dikdörtgen, diğer iki yan yüzeyi ise paralelkenardır. Eğik kare prizmanın dik kesitinin bir kenarı taban kenarı a kadar, diğeri ise, a’=a.sin a kadardır. Buradan; Dik Kesit Alanı = Taban Alanı x Sin a Dik kesit çevresi = 2a +2a.sin aEğik prizmaların yanal alanlarının toplamı Yanal alan= Dik kesit çevresi x Yanal Ayrıtbağıntısı ile bulunur. Alt ve üst tabanlar ilave edildiğinde tüm alan bulunmuş olur. Bütün prizmalarda olduğu gibi eğik prizmalarda da hacim, taban alanı ile yüksekliğin çarpımı ile bulunur. Hacim = Taban Alanı x YükseklikAyrıca dik kesit alanı ile yanal ayrıtın çarpımı ile de hacim bulunabilir. Hacim = Dik Kesit Alanı x Yanal Ayrıt 2. Eğik Silindir |AA’| = |BB’| = l Yanal ayrıtı l olan ve taban düzlemi ile a açısı yapan eğik silindirde yükseklik, h=l.sin a Dik Kesit Alanı=Taban Alanı x Sin a
Eğik silindirin yan yüz alanı, dik kesit çevresi ile yanal ayrıtının çarpımıdır. Bütün eğik prizmalarda olduğu gibi eğik silindir de de hacim, dik kesit alanı ile yanal ayrıtın çarpımına eşittir. Hacim = Taban Alanı x Yükseklik Hacim = Dik Kesit Alanı x Yanal Ayrıt Yanal Alan = Dik Kesit Çevresi x Yanal AyrıtPrizma
 

CaunTR

Level 6
TM Üye
Üye
Katılım
30 Ocak 2012
Konular
5
Mesajlar
1,102
Reaksiyon Skoru
11
Başarım Puanı
69
MmoLira
0
DevLira
0
En İyi Cevap Puanı
0
Ticaret - 0%
0   0   0
Paylasim için teşekkürler..
 

_tusunami_

Level 14
Fahri Üye
TM Üye
Katılım
5 Kas 2009
Konular
688
Mesajlar
9,909
Reaksiyon Skoru
458
Başarım Puanı
205
MmoLira
0
DevLira
0
En İyi Cevap Puanı
0
Ticaret - 0%
0   0   0
Teşekkürler..
 

eyormaz

Level 8
TM Üye
Katılım
21 Eki 2008
Konular
465
Mesajlar
3,077
Reaksiyon Skoru
168
Başarım Puanı
185
MmoLira
209
DevLira
0
En İyi Cevap Puanı
0
Ticaret - 0%
0   0   0
tesekkurler
 

usoykan

Level 4
TM Üye
Katılım
21 Kas 2012
Konular
8
Mesajlar
388
Reaksiyon Skoru
13
Başarım Puanı
57
MmoLira
4
DevLira
0
En İyi Cevap Puanı
0
Ticaret - 0%
0   0   0
tesekkurler guncel
 

Şu an konuyu görüntüleyenler (Toplam : 1, Üye: 0, Misafir: 1)

Üst